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The amplitude modulation phenomena, defined originally by Mathis et al. [J. Fluid
Mech. 628, 311 (2009)], corresponds to a unique nonlinear interaction between Reynolds
number (Reτ ) dependent large-scale motions and Reτ -invariant inner-scale motions ob-
served in canonical wall-bounded flows. While similar nonlinear interactions have been
quantified previously in non-canonical wall-bounded flows, linking them solely to am-
plitude modulation is questionable due to the fact that each non-canonical effect is
associated with distinct variations in the energies of both the large and inner scaled
motions. This study revisits analysis of nonlinear triadic interactions, with consideration
to various non-canonical effects, by analyzing published hot-wire datasets acquired in
the large Melbourne wind tunnel. It is found that triadic interactions, across the entire
turbulence scale hierarchy, may become statistically significant with increasing intensity
of non-canonical effects such as wall roughness, pressure gradients, and spanwise or
wall-normal forcing (when compared relative to their respective canonical baseline cases
at matched Reτ ). This stands in contrast to previous observations made in canonical flows,
where only the interaction between inner scales and inertia-dominated large scales was
considered dynamically significant for increasing Reτ . The implications of these findings
are discussed for near-wall flow prediction models in non-canonical flows, which should
take into account all nonlinear interactions coexisting in wall-bounded flows.

DOI: 10.1103/PhysRevFluids.9.124602

I. INTRODUCTION AND MOTIVATION

A characteristic feature of all turbulent flows is a broad range of turbulent scales of motion,
which are nonlinearly coupled across the energy spectrum. This interscale coupling/interaction
regulates the energy transfer mechanisms that drive several technologically relevant flows, such
as the turbulent boundary layer (TBL). TBLs encountered in engineering applications are typically
exposed to non-canonical effects/perturbations, such as wall roughness, pressure gradients, etc.,
which affect these interscale interactions in a nontrivial manner. Here we will discuss a well-known
interscale interaction, i.e., the amplitude modulation phenomenon [1,2], in the context of non-
canonical wall-bounded flows. Before investigating non-canonical effects, however, we will first
define the various terminologies and revisit the established knowledge on interscale interactions in
a canonical TBL, i.e., a zero-pressure gradient (ZPG) TBL over a hydraulically smooth wall.

Figure 1 depicts a spectral representation of the energy distribution across a broad hierarchy of
scales coexisting in a high-Reynolds number [Reτ > O(103)] canonical TBL [3]. It is presented
as the premultiplied frequency ( f ) spectra of the streamwise velocity fluctuations ( f φ+

uu) plotted
for various wall-normal distances (z+ = zUτ /ν) and as a function of timescales (T + = TU 2

τ /ν =
U 2

τ / f ν). Here, Uτ and ν denote the mean friction velocity and kinematic viscosity used to normalize
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FIG. 1. Premultiplied energy spectra of a canonical TBL at Reτ = 8100 from Marusic et al. [3]. Vertical
black dashed line represents the cut-off timescale T +

c = 350. The white × and ◦ mark the approximate "inner"
and "outer" peaks, respectively.

flow properties in viscous scaling (indicated with the superscript "+"). The Reynolds number of
the TBL will be quantified using the friction Reynolds number, Reτ = Uτ δ/ν, where δ is the
TBL thickness. In Fig. 1, the outlined region (I) captures the energy distribution across scales
associated with the Reτ -invariant near-wall cycle [4,5], and the associated "inner" peak location
is marked by a white × for reference. Slightly larger timescales, outlined in region (II), correspond
to a group of eddies/motions exhibiting distance-from-the-wall scaling (e.g., uniform momentum
zones [6] or attached/wall-scaled eddies [7,8]). The overall energy associated with region (II) is
Reynolds number dependent, owing to the growth in the hierarchy/range of wall-scaled eddies
with increasing Reτ [7]. The final outlined region (III) is associated with large δ-scaled eddies or
superstructures, whose energies are also dependent on the Reynolds number [5,9,10]. This region
exhibits a peak at sufficiently high Reτ , the approximate location for which has been marked by a
white ◦ for reference. A cut-off timescale of T +

C = 350 (vertical dashed line in Fig. 1) has often been
used in the literature to nominally separate these Reynolds number dependent (uL) and invariant
(ui) motions [11], a distinction which will be used throughout the present study to decompose u
fluctuations into uL = u(T + � T +

c ) and ui = u(T + < T +
C ). Previous studies have generally used

the terminology pairings of large- and smallscale or inner- and outerscale to differentiate between
these decomposed fluctuations (see [2] and [11], respectively, for example). In the present study we
will use the terminology "large scale" to refer to uL = u(T + � T +

c ) and "inner scale" to refer to
ui = u(T + < T +

C ).
For a canonical TBL, it is now well established that the variance of the velocity fluctuations

associated with the inner scales [(u+2

i ), corresponding to region (I) of Fig. 1], does not vary with Reτ

[12]. Conversely, the variance of large-scale velocity fluctuations [(u+2

L ) corresponding to regions

(II) and (III) of Fig. 1], increases with Reτ throughout the TBL. Hence, u+2

L is solely responsible
for the observed Reτ increase in near-wall streamwise turbulence intensity in a canonical TBL
[12]. Hutchins and Marusic [5] described these increasingly energetic large-scale signatures, in the
near-wall region, to be a superimposition (akin to a "footprint") of the structures originating in
the outer region of the TBL. They also observed a large-scale modulating effect on the amplitude
of small-scale (inner-scale) velocity fluctuations in the near-wall region, which was found to be
reminiscent of pure amplitude modulation, and was referred to as such. Mathis et al. [2] introduced
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an amplitude modulation coefficient (R) to quantify this modulation of the inner scales, by the large
scales, at any wall-normal location z. R was defined as

R(z) = u+
L (z)EL(u+

i (z))√
u2+

L (z)
√

EL(u+
i (z))2

, (1)

where u+
L represents large-scale streamwise velocity fluctuations and EL(u+

i ) represents a large-scale
filtered envelope of ui computed via the Hilbert transform. Although it is agreed that two-point
correlation methods give an overall higher fidelity quantification of amplitude modulation [13–15],
Mathis et al. [2] demonstrated the single-point correlation coefficient in Eq. (1) yields a qualitatively
similar result to the two-point correlation under most conditions.

Here, it is important to note the fact that the amplitude modulation phenomena was originally
proposed in the context of a canonical high-Reτ TBL, to describe exclusively the effect of energetic
large-scale structures superimposing onto, and modulating the amplitude of, inner scales (which
are Reτ invariant). Per this original definition, the phenomenon is associated with an inherent sense
of directionality, i.e., it is implied that the large-scale structure dynamics govern their nonlinear
interaction with the inner scales. This makes sense given that the experiments of Hutchins and
Marusic [5] and Mathis et al. [2] were focused on Reτ effects in a canonical TBL, where the increase
in amplitude modulation can be solely attributed to the Reτ -dependent energization of the large-
scale structures. It is also noteworthy that the existence/description of causality between large-scale
superimposition and amplitude modulation is still a topic of ongoing research [16]. Previous studies
have also proposed alternative descriptions of the amplitude modulation phenomena for canonical
TBLs, such as the quasisteady quasihomogeneous (QSQH) theory of Chernyshenko and coworkers
[17,18]. This theory mathematically relates the amplitude of inner-scale fluctuations in the near-wall
region to large-scale fluctuations in skin friction, without making explicit assumptions about the
nature of interactions between structures in the inner and outer layers (i.e., superimposition). As
such, the "cause-and-effect" relationship between amplitude modulation and large-scale motions in
the near-wall region remains an open question. It is noteworthy to also consider the recent interest
in revisiting the physical interpretation of the amplitude modulation coefficient definition (R), based
on consideration of the interactions between the mean flow and the large scales [19]. However, the
present study limits its investigation and interpretation to the classical definitions of quantifying the
hierarchy of nonlinear triadic interactions within the TBL (amplitude modulation included; [2,20]),
and extending it to the TBL scenarios associated with different non-canonical perturbations. As a
consequence, the present conclusions do not depend on any new perceptions/interpretations of the
exact physical mechanisms governing the amplitude modulation phenomena.

Based on the observations described above, the amplitude modulation phenomena can be con-
sidered as a subset of the nonlinear triadic interactions coexisting across the entire TBL scale
hierarchy [20]. The triadic nature of these interactions emerges from the quadratic nonlinearity
in the governing Navier-Stokes equations. Triadically coupled scales correspond to the frequency
scales of three eddies (say, l , m, and n) that are interconnected via any of the following relations:

(a) ωl = ωm − ωn, (b) ωl = ωm + ωn, (c) ωl = 2ωm, or (d) ωl = 2ωn, (2)

where ωi = 2π fi = 2π/Ti. Per the framework proposed by McKeon and coworkers [14,20], the
mean nonlinear coupling between all triadically coupled scales (at any z) can be quantified by the
skewness of the u fluctuations, Su. This was demonstrated by decomposing statistically stationary
streamwise velocity time series, u(t ), into Fourier modes: u(t ) = ∑∞

i=1 αisin(ωit + ψi ), with ampli-
tudes (αi ), phase (ψi ), and 0 < ωi < ω∞. Hence,

Su = u3

σ 3
= 6

4σ 3

∑
∀ l,m,n

ωl <ωm<ωn
ωl +ωm=ωn

αlαmαnsin(ψl + ψm − ψn) + 3

4σ 3

∑
l=1

ωn=2ωl

α2
l αnsin(2ψl − ψn), (3)
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where σ =
√

u2, and ψl + ψm − ψn represents the phase difference between triadically coupled
scales. Based on Eq. (3), Su can be considered a surrogate for the average measure of phase
difference between triadically coupled scales across the full spectrum of energetic turbulent ed-
dies/motions [20]. Thus, higher Su can be interpreted as a stronger coupling/interaction owing to a
lower phase lag between triadically coupled scales. Consideration of skewness to quantify interscale
coupling is practical here because it does not require any normalization (by characteristic length
or velocity scales), which could otherwise undermine comparisons between datasets covering a
broad range of noncanonical characteristics. An additional advantage is that the skewness does
not require decomposition of the velocity for computation. However, interscale interactions can be
described in more detail by computing the individual (small) inner- [ui = u(T + < T +

C )] and (outer)
large- [uL = u(T + > T +

c )] scale contributions to Su, where the cut-off timescale considered is
T +

c = 2π/ω+
c = 350 [11]. This decomposition based on frequency cutoff (instead of a wavelength-

based cutoff) is preferred, given it avoids dependence on the choice of convective velocity, which
may influence the amplitude modulation coefficient [21]. This decomposition enables estimation of
the nonlinear coupling between uL and ui, for which we substitute u = uL + ui into (3) following
Mathis et al. [22] to obtain

Su = u3

σ 3
= u3 = u3

L + u3
i + 3u2

Lui + 3u2
i uL, (4)

where the double overbar denotes a time-averaged quantity normalized by σ 3. Duvvuri and McKeon
[20] reported exact expressions for the individual terms in Eq. (4), with

u2
i uL = 1

2σ 3

∑
∀ l,m,n

ωn−ωm=ωl
0<ωl <ωc
ωm,ωn>ωc

αlαmαnsin(ψl + ψm − ψn) = R

2

(√
u2+

L (z)
√

EL(u+
i (z))2

)
, (5)

indicating that the "cross-term" 3u2
i uL represents the mean phase difference between the large scales

ωl and an "envelope" of the triadically coupled inner scales: ωn, ωm (> ωc). Increasing values for
this crossterm are therefore associated with a stronger interscale coupling/interaction owing to a

reduction in phase between uL and ui. Mathis et al. [22] observed experimentally that 3u2
i uL behaved

similarly to the correlation coefficient (R) used to quantify the amplitude modulation phenomena,
and was also the most dominant scale-decomposed skewness term Eq. (4) for a canonical TBL.
Additionally, this crossterm had a strong Reynolds number dependence that extended across the
whole TBL, akin to the behavior of R. The directly proportionality between the crossterm and
the amplitude modulation coefficient (R) was formally established by Duvvuri and McKeon [20]
through Eq. (5), thereby also confirming R to represent a subset of the nonlinear interactions
coexisting across the full TBL scale hierarchy.

A number of studies have also used the correlation coefficient from Eq. (1) to quantify the
interscale coupling in non-canonical TBLs. The results from these non-canonical studies are often
interpreted such that any increment in R is an artifact of amplitude modulation, in the classical
sense defined by Mathis et al. [2] (i.e., driven by changes in the large-scale dynamics). However,
interscale coupling measured in most, if not all, non-canonical TBLs can pertain to interactions
beyond the specific subset of interactions which correspond to amplitude modulation [defined
in Eqs. (1)–(5)]. For instance, the classical definition of amplitude modulation would preclude
describing changes in inter-scale coupling in flows without an energetic large-scale structure, as
amplitude modulation [i.e.. ZPG TBLs at Reτ � O(102) [5], where regions (II) and (III) of Fig. 1
are statistically insignificant]. Similarly, it would also be incorrect to describe changes in interscale
coupling as amplitude modulation if they are solely associated with manipulation of the near-wall
cycle [i.e., region (I) in Fig. 1], which occurs owing to non-canonical effects such as roughness
[23] or porous surfaces [24]. Interestingly, other non-canonical effects such as pressure gradients
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TABLE I. Published hot-wire datasets considered in the present study.

Hot-wire dataset

Baseline
smooth-wall
ZPG TBL Perturbation Magnitude

Hot-wire
resolution

Marusic et al. [3] Reτ ≈ 2800 Increasing Reτ 2800 < Reτ < 13400 l+ ∼ 24
Deshpande et al. [26] Reτ ≈ 6500 Increasing APG 0.0 < β < 1.7 l+ ∼ 10
Squire et al. [30] Reτ ≈ 6500 Increasing surface roughness 0 < k+

s < 97 l+ ∼ 22
Deshpande et al. [11] Reτ ≈ 6000 Increasing spanwise 0.0 � A+ �12.3, l+ ∼ 8

wall forcing 0.000 � f +
osc � 0.007

Abbassi et al. [31] Reτ ≈ 14400 uL Opposing jet l+ ∼ 20
Abbassi et al. [31] Reτ ≈ 14400 uL Reinforcing jet l+ ∼ 20

[25,26], thermal stratification [27], or large-scale free-stream disturbances [28] have also been found
to be responsible for affecting the entire hierarchy of turbulent scales [i.e., across regions (I)–(III)
in Fig. 1]. However, associating the corresponding changes in interscale coupling solely with the
amplitude modulation phenomena would not be appropriate, given they are likely to be an artifact
of changes in both uL and ui, differing from the classical definition. Additionally, in all the above
non-canonical scenarios, the inherent unidirectionality associated with the amplitude modulation
phenomena (regarding large-scale structure dynamics affecting the inner scales) may not be strictly
applicable.

These observations suggest that interpretation of the correlations conventionally associated

with amplitude modulation (i.e., R and 3u2
i uL) should be considered cautiously, especially in the

context of non-canonical wall-bounded flows. To emphasize this, the current study will focus on
quantifying changes across the hierarchy of interscale interactions, which arise from a wide variety
of non-canonical perturbations, by demonstrating the nontrivial effect of these perturbations relative
to their canonical baseline cases at matched Reτ . Specific instances will be identified empirically

where 3u2
i uL (or R) alone are insufficient to draw conclusions regarding changes in amplitude

modulation phenomena, owing to some non-canonical effects as described qualitatively above. The
implications of these findings with respect to the modeling of wall-bounded flows will also be
discussed throughout. In that sense, the present findings motivate further investigations toward the
appropriate quantification/description of the amplitude modulation phenomena in the future, with
particular emphasis on improving analysis/modeling of non-canonical wall-bounded flows.

II. EXPERIMENTAL DATASETS

In the present study, we argue that changes in the modulation coefficient, R, or the cross-term,

3u2
i uL, alone are insufficient to draw conclusions regarding amplitude modulation phenomena in

the context of non-canonical TBLs. For this, we have assembled and analyzed a unique set of
published hot-wire datasets from a single experimental facility, the large Melbourne wind tunnel.
These datasets will be used independently to demonstrate enhancement of a broad range of inter-
scale couplings (owing to their non-canonical perturbations), by comparing with their respective
canonical baseline cases at matched Reτ . The measurement details of all these datasets can be
found in their respective references, which have been documented alongside the range of their
respective perturbations in Table I. Each of these datasets comprise a canonical baseline case,
i.e., corresponding to a high-Reτ ZPG TBL over a smooth wall, against which the effect of each
perturbation, on interscale coupling, will be analyzed at matched TBL Reτ . A unique aspect of these
datasets is that each of them is acquired with nominally similar hot-wire resolution l+, ensuring that
the effect of spatial filtering emerging from finite hot-wire length (l; [12]) will not adversely affect
our conclusions. To that end, the datasets in Table I have been re-analyzed using the framework
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described in Eqs. (1)−(5) and the compiled results are presented in Figs. 2 and 3. The normalized
inner- and large-scale contributions to the variance of streamwise velocity fluctuations (u2+

i and

u2+
L , respectively), estimated based on T +

C = 350, will be used to identify the scale range and
wall-normal regions that are affected by each perturbation. These conclusions, however, should not
be influenced by the choice of a viscous-scaled frequency cutoff (T +

C ; [2]) since every non-canonical
case is compared against its canonical baseline case at matched Reτ (refer to Table I). By applying a
consistent cutoff for all cases, observations regarding how each non-canonical perturbation changes
the distribution of energy, relative to the canonical baseline case (where Fig. 1 is representative of all
canonical baseline cases), remains unbiased and consistent with analysis reported in the literature.
Complimenting the variance, the premultiplied energy spectra from the near-wall and outer regions
will also be presented to corroborate our discussion based on u2+

i and u2+
L . All these statistics, as well

as their reference z locations, have been normalized using the friction velocities (Uτ ) associated
with the respective perturbed cases. The choice of Uτ , however, does not significantly affect the
main conclusions that will be based predominantly on the skewness terms Eq. (4). These terms are
considered to quantify the effect of non-canonical perturbations on the various triadic interactions
coexisting in the TBL. Particular attention is given to the near-wall region since several past efforts
have focused on leveraging interscale interactions to predict the turbulence characteristics in this
region [29], which is often inaccessible in high-Reτ experiments. In Figs. 2 and 3, variances and
nonlinear coupling terms associated with the canonical baseline cases have been plotted using light
shading and a solid black outline for all cases considered in Table I.

III. NONLINEAR INTERACTIONS FOR VARYING PERTURBATIONS

A. Increasing Reynolds number, Reτ

The first dataset is from the canonical TBL study of Marusic et al. [3], where the perturbation of
interest is an increase in the flow Reτ . In this experiment, increasing Reτ values were achieved by
maintaining a nominally constant upstream flow condition and conducting hot-wire measurements
at various downstream locations, resulting in an increase in Reτ without significant changes to the
viscous scale. It is noteworthy that this specific perturbation informed the original description of
amplitude modulation by Mathis et al. [2], where the Reτ -increase in the energy of large-scale
velocity fluctuations in regions (II) and (III) (of Fig. 1) led to an increase in the coupling (reduction
in phase difference) between the inner- and large-scaled velocity fluctuations [2,11].

Statistics from the Marusic et al. [3] dataset are presented in Fig. 2.1. As expected based on the

literature [12], there is no change in u+2

i with increasing Reτ [light to dark colors in Fig. 2.1(a)],

while a significant change in u+2

L can be seen across all z+ locations. This trend also gives support

to the choice of T +
C = 350, as the invariant behavior of u+2

i with increasing Reτ has been captured,
consistent with expectations [12]. The premultiplied spectra in Fig. 2.1(b) are from z+ = 15, as
indicated by the vertical dotted line in Fig. 2.1(a). The only significant change in the spectra is
an increase in energy corresponding to the large scales (right of vertical dotted line at T +

C = 350),
i.e., corresponding to an increase in uL energy. A similar effect is seen in the premultiplied spectra in
Fig. 2.1(d) which are from z+ = 200 (i.e., nominally within the log region), indicated by the vertical
dash dotted line in Fig. 2.1(a). The effect of increasing Reτ on the skewness and the crossterm
can be seen in Figs. 2.1(c) and 2.1(e). Consistent positive changes in the skewness and crossterm,
with increasing Reτ , are observed for both z locations. Though not shown here, this same trend
can be observed in the skewness at wall-normal locations across the log region [22]. The assertion
that amplitude modulation (i.e., the crossterm) is the only statistically significant triadic/nonlinear
interaction for a canonical TBL is confirmed by the similar magnitudes of the skewness and the
crossterm in Figs. 2.1(c) and 2.1(e). This is reaffirmed in Figs. 3.1(a) and 3.1(b) which demonstrate
a negligible variation in all other terms of Eq. (4) with increasing Reτ (also shown by [22]), thereby
suggesting insignificant changes in other triadic interactions with increasing Reτ .
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(a)

(b)

(d)

(c)

(e)

(a)

(b)

(d)

(c)

(e)

(a)

(b)

(d) (e)

(c)

FIG. 2. (Left column) Variance of inner- (left axis) and large- (right axis) scale velocity fluctuations for
varying intensities of the following perturbations: 2.1 increasing Reτ , 2.2 increasing β, and 2.3 increasing k+

s .
(Center column) Premultiplied energy spectra for z+ locations corresponding to (b) the inner region [indicated
by a vertical dotted line in (a)] and (d) the outer region [indicated by a dash dotted line in (a)]. Vertical dashed

lines in the center column represent the cut-off timescale, T +
c = 350. (Right column) Crossterm, 3uLu2

i , (left

axis) and skewness of streamwise velocity fluctuations, u3 (right axis) as a function of increasing perturbation
intensities at z+ locations, matched with (b) and (d), respectively, corresponding to (c) the inner region and (e)
the outer region. Reference canonical cases are shown in the lightest shading, and symbols for the reference
canonical cases have a solid black outline.
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(a)

(b)
(c)

(a)

(b) (c)

(d) (e)

(a)

(b) (c)

(d) (e)

FIG. 2. (Continued.)

B. Increasing APG strength, β

The second dataset is from Deshpande et al. [26] where the perturbation is a low-to-moderate
adverse-pressure gradient (APG) with increasing strength as quantified by the Clauser pressure-
gradient parameter, β. Here, β(x) = (δ∗/ρU 2

τ )(dP/dx), where δ∗ = ∫ δ

0 (1 − U (z)/Ue)dz is the
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(a) (b) (a)

(a) (b) (a) (b)

(a) (b) (a) (b)

FIG. 3. Cross terms (3uLu2
i , 3u2

Lui) and skewness of inner- and large-scale velocity fluctuations (u3
i , u3

L) as
a function of increasing perturbation intensities at z+ locations corresponding to (a) the inner region (vertical
dotted lines) and (b) the outer region (dash dotted lines) as indicated in the corresponding subfigures (a) in
Fig. 2. Results from reference canonical cases are shown in the lightest shading, and have a solid black outline.

displacement thickness, U (z) is the mean streamwise velocity at wall-normal location z, Ue =
U (z = δ), i.e., the edge velocity, ρ is the fluid density, and dP/dx is the mean streamwise pressure-
gradient at the measurement location x. In this experiment, increasing β values were achieved by
systematically increasing the number of low-porosity screens installed at the tunnel outlet. The
presence of these screens increased the tunnel static/back pressure, while openings along the test
section roof permitted the pressurized air to bleed out from various streamwise locations, thereby
imposing a moderately strong APG on the TBL developing along the bottom wall [26]. A single
hot-wire measurement station (located near the downstream end of the test section to ensure a
nominal high-Reτ condition) was used, and the free-stream velocity at this location was matched
for various β cases to ensure a nominally matched Reτ . Based on the conclusions of Deshpande
et al. [26], such a perturbation is expected to increase the energy of both the inner- and large-scale
velocity fluctuations, especially in the outer region of the TBL.

Velocity statistics associated with the various APG cases are presented in Fig. 2.2. In Fig. 2.2(a),

a distinct increase in u+2

i can be seen in the outer region for all APG cases (relative to the ZPG case),
while it does not change significantly in the inner region. This is well known in the literature [26,32]
for weak and moderately strong APG TBLs, with the behavior in the outer region being associated

with the migration of the near-wall "inner" scales to the outer region [33]. Changes in u+2

L can also
be seen across all z+ locations, specifically an increase in the outer region (z+ > 200) can be noted
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that is proportional to β [26,32]. The premultiplied spectra in Fig. 2.2(b) are from z+ = 24, as
indicated by the vertical dotted line in Fig. 2.2(a). This is the z+ location nearest to the wall where
data was available for each case, including the baseline canonical case. The only discernible change
is an increase in the premultiplied spectra amplitude for large scales (right of vertical dotted line
at T +

C = 350), which is associated with an increase in β. The premultiplied spectra in Fig. 2.2(d)
are from z+ = 1000, where large pressure gradient related changes to the variance are observed,
indicated by the vertical dash dotted line in Fig. 2.2(a). At this z+ location there is a broadband
increase in the premultiplied spectra amplitude, corresponding with an increase in β, however, the
amplitude of inner scales (T + < T +

C ) does not change significantly with increasing β for β � 0.9,

similar to the trend seen in u+2

i in Fig. 2.2(a).
The effect of increasing β on the skewness and the crossterm has been documented in Figs. 2.2(c)

and 2.2(e). Both these terms exhibit net growth with increasing β, at the inner as well as outer z+
locations. This effect can be seen for all APG strengths in the dataset, ranging from a relatively weak
APG (β < 1, square symbols) to a moderate APG (β ∼ 1.7, triangle symbols). However, unlike the
case of canonical TBLs, there are noticeable differences between the magnitudes of the skewness
and the crossterm, and their rate of increase with β, suggesting changes in triadic interactions apart
from those associated with the amplitude modulation phenomena. This is evidenced in Figs. 3.2(a)

and 3.2(b) where both u3
L and u3

i are noted to increase with β, particularly rapidly in the outer region.
This enhancement can be associated with the energization of both the inner and large scales by the
APG, as discussed above [32,33]. It also confirms the influence of APG on the nonlinear interactions
spanning across the entire scale hierarchy coexisting in the TBL. These results suggest that, within
the framework of increasing APG strength (β) as a perturbation to the baseline canonical TBL,
enhancement of all triadic couplings need to be accounted for in any predictive models for APG
TBLs. Moreover, the unidirectionality associated with the amplitude modulation phenomena (i.e.,
uL governing interscale interactions) cannot be extended to APG TBLs given both uL and ui are
manipulated with increasing β [Fig. 2.2(a)].

C. Increasing surface roughness, k+
s

The third dataset is from Squire et al. [30], where the perturbation is increasing surface roughness
characterized by an increasing Nikuradse-roughness height, k+

s . In this experiment, the entire tunnel
floor was covered with a P36 grit sandpaper, while both the free-stream velocities and streamwise
measurement locations were adjusted such that a nominally constant high Reτ was maintained
across various k+

s cases. This also meant that ks/δ increased with k+
s , however, the relative roughness

height consistently remained small across all cases (i.e., δ/ks � 40).
Based on the conclusions of Squire et al. [30], surface roughness is expected to decrease

the energy of both the inner- and large-scale velocity fluctuations near the wall. As such, this
perturbation directly affects the TBL region (I) labeled in Fig. 1, and this is confirmed from the

hot-wire statistics presented in Fig. 2.3. In Fig. 2.3(a), there is a significant decrease in u+2

i with

increasing k+
s (light to dark colors) across all z+ locations. There is also a decrease in u+2

L , which is
primarily localized to the near-wall region (z+ < 100). The premultiplied spectra in Fig. 2.3(b) are
plotted for z+ ≈ 40, which was the nearest possible location for hot-wire data acquisition among all
roughness cases considered. The amplitude of the premultiplied spectra is noted to decrease across
all scales (i.e., all T +) with an increase in k+

s . This confirms that there is a decrease in the energy
of both ui and uL near the wall, corresponding with the increase in k+

s . The premultiplied spectra in
Fig. 2.3(d) are plotted for z+ = 400 (i.e., in the log region). At this location there is still a decrease
in the energy of inner scales (left of vertical dotted line at T +

C = 350), but there is now an increase
in the energy of large scales (right of vertical dotted line at T +

C = 350), associated with the largest
k+

s . These spectra highlight the unique aspects of the surface roughness perturbation which set it
apart from the previous two cases.
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The effect of increasing k+
s on the skewness and the crossterms are shown in Figs. 2.3(c) and

2.3(e). Both the skewness and the crossterm show a positive change with increasing k+
s , which can

be seen across both transitionally rough (0 < k+
s < 80; square symbols) and fully rough scenarios

(k+
s > 80; diamond symbols), at both z+ locations. These results suggest that, within the framework

of increasing surface roughness (k+
s ) as a perturbation to the baseline canonical TBL, a decrease in

energy of both inner and large scales is associated with a local increase in the magnitude of interscale
coupling near the wall. Similarly, a decrease in energy of inner scales and an increase in the energy
of large scales is also associated with a local increase in the magnitude of interscale coupling in the
log region. Although this increase in the crossterm near the wall resembles an amplitude modulation
effect, it differs fundamentally from the original definition by Mathis et al. [2] for a canonical TBL.
In the case of increasing k+

s , notably, magnitudes of both ui and uL are reduced in the near-wall
region, and thus the increase in the crossterm cannot solely be attributed to the influence of the
large scales. Further, increasing k+

s is found to influence the nonlinear interactions spanning the
entire energy spectrum, especially near the wall, which is evident from the various decomposed
terms of skewness plotted in Figs. 3.3(a) and 3.3(b). Therefore, akin to the conclusions regarding
the effect of increasing β, the current analysis indicates the need to account for all nonlinear triadic
interactions in the development of predictive models for rough wall TBLs. Moreover, the growth of
the crossterm cannot be characterized as an amplitude modulation effect in the traditional sense as
defined by Mathis et al. [2].

Although the present analysis limits itself to scenarios of TBL developing over homogeneously
distributed surface roughness, further interesting flow characteristics can be expected if step changes
in surface roughness are considered. Interested readers are referred to the recent study by Li et al.
[34], who have experimentally quantified the crossterm (i.e., amplitude modulation term) for a TBL
developing after a rough-to-smooth change in wall condition. Their investigation revealed higher
magnitudes of the crossterm in the near-wall region (relative to a canonical TBL), which was
attributed to the more energetic footprints of the large-scale motions influenced by the upstream
rough-wall condition.

D. Increasing spanwise wall forcing, A+

The fourth dataset considered here is from Deshpande et al. [11] where the perturbation is
a spanwise oscillating wall with increasing magnitude of the spanwise wall velocity, given by
A+ = A/Uτ . In this experiment, 48 individual slats mounted along a 2.4 m portion of the test
section floor were oscillated in a phase-synchronized manner along the spanwise direction, leading
to the creation of an 8λ long upstream-traveling sinusoidal wave with user specified frequencies
( fosc). With a nominal stroke length (d = 18 mm) for the slat movement, the amplitude of the
spanwise wall velocity (A = 2πd fosc) is directly related to the user varied oscillation frequency.
For the experiments considered in this study, the wall oscillation frequency range was maintained
between 0.000 � f +

osc�0.007, which led to a variation in spanwise wall forcing across
0.0� A+ �12.3. Hot-wire measurements were conducted in the very near-wall region, above the
oscillating slats, for both the nonactuated and actuated cases. The wind tunnel free-stream velocity
was matched in all cases.

Based on the findings of Deshpande et al. [11], this wall actuation attenuates the energy of
both inner- and large-scale velocity fluctuations, thereby affecting the energy spectra across regions
(I)−(III) of Fig. 1. The hot-wire statistics from these cases are presented in Fig. 2.4, which, although
limited to a single z+ location, exhibit trends consistent with other locations in the near-wall region
(confirmed by comparisons with independent PIV measurements in [35], which show wall-normal

profiles across most of the TBL). A seen in Fig. 2.4(a), a significant decrease in both u+2

i and u+2

L
with increasing A+ (light to dark colors) at z+ = 6 is observed. This is confirmed by Fig. 2.4(b),
which shows an attenuation of the amplitude of the premultiplied spectra across all T + � 50, with
increasing A+. The effect of increasing A+ on the skewness and the crossterm at z+ = 6 is shown
in Fig. 2.4(c), where both these statistics are found to exhibit a significant positive change with
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increasing A+ (i.e., increasing drag reduction [11,35]). Similar observations of increasing skewness,
with increasing drag reduction, have been noted previously on introduction of local oscillating
blowing [36] or microbubbles and polymers [37] in the TBL. However, none of these studies
associated their observations with interscale interactions, which has been discussed here. A notable
observation in the present study is the gradual positive change in the nonlinear interactions, starting
from the smallest perturbation/A+ (in square symbols), through to the largest perturbation/A+ (right
pointing triangle symbols). These results suggest that, within the framework of increasing spanwise
wall forcing as a perturbation to the baseline canonical TBL, the decrease in near-wall energy of both
inner and large scales is accompanied with a significant local increase in the interscale coupling.
However, similar to the conclusions drawn about the previous non-canonical perturbations, the
present increase in the crossterm cannot be associated with the amplitude modulation defined in
the classical sense, given it is a consequence of attenuation of both large and inner scales. Further,
significant differences between the magnitudes, and rate of increase, of the crossterm and skewness

in Fig. 2.4(c) can be explained by the increasing magnitude of the u3
i term (with increasing A+) as

shown in Fig. 3.4(a), but not of u3
L. This reaffirms the recurring conclusion that all triadic interactions

should be considered when modeling the effect of forcings, such as spanwise wall oscillation,
on the TBL. Collectively, the aforementioned cases reveal the uniqueness with which different
non-canonical perturbations can affect the hierarchy of triadic interactions coexisting in the TBL.
Additionally, these perturbations all typically resulted in a decrease in phase between coupled scales
on average (i.e., increasing skewness), but this increase was shown to not be a function of amplitude
modulation alone [i.e., additional terms of Eq. (4) become significant]. These results also motivate
the consideration of all triadic interactions when modeling wall-bounded flows, particularly in the
case of non-canonical flows.

E. Opposing and reinforcing wall-normal jet forcing

The fifth and sixth datasets are from Abbassi et al. [31], where the perturbation is a wall-normal
jet with a control scheme designed to either enhance (reinforcing case) or weaken (opposition case)
large-scale velocity fluctuations in the outer region. In these experiments, a spanwise array of hot-
film sensors placed on the wall, upstream of the jet actuators, were used to identify the footprint
of incoming uL motions as an input for the actuation scheme. The actuators were composed of
a spanwise array of streamwise elongated slots in the wall, which generated a wall-normal jet of
pressurized air supply that penetrated into the log region of the TBL. A single hot-wire measurement
station downstream of the jets was used, and the free-stream velocity was matched in both the
actuated and nonactuated cases to maintain a nominally similar high-Reτ inflow condition. In the
opposition control case, the hot-film sensors were used to identify incoming high-energy (+uL)
large-scale motions so the jets could fire against these high-skin-friction-contributing regions [31].
On the other hand, the same system was used to identify and target incoming low-energy (−uL)
large-scale motions for the reinforcing case.

Abbassi et al. [31] found the opposing and reinforcing cases to respectively attenuate and

enhance the large-scale energy in the outer region. This is indeed depicted by u+2

L presented in

Figs. 2.5(a) and 2.6(a) for the opposition and reinforcing cases, respectively, while u+2

i remains
relatively unaffected for both. Hence, both these cases represent a unique scenario where a change
in the large-scale energy in the outer region is not reflected in their signatures/footprints close to the
wall. This is supported by the premultiplied spectra plotted for both the reinforcing [Fig. 2.5(b)] and
opposing cases [Fig. 2.6(b)] compared against their corresponding nonactuated cases at z+ ≈ 15.
Consequently, the effects of either of these wall-normal jet forcings, on the skewness and the
crossterms, are negligible at z+ = 15 [depicted in Figs. 2.5(c) and 2.6(c)]. Alternatively, the
premultiplied spectra plotted for the reinforcing [Fig. 2.5(d)] and opposing cases [Fig. 2.6(d)] at
z+ ≈ 500 (i.e., in the log region) show a decrease or increase in the energy of large scales (right
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TABLE II. Summary of key findings based on Figs. 2 and 3. ↑ and ↓, respectively, indicate increase or
decrease in magnitude relative to their canonical baseline cases.

Perturbation TBL region u2
i u2

L u2
i uL u3

i u3
L u2

Lui

Increasing Reτ inner ≈ ↑ ↑ ≈ ≈ ≈
outer ≈ ↑ ↑ ≈ ≈ ≈

Increasing β inner ≈ ↑ ↑ ↑ ↑ ≈
outer ↑ ↑ ↑ ↑ ↑ ≈

Increasing k+
s inner ↓ ↓ ↑ ↑ ↑ ≈

outer ↓ ↑ ↑ ≈ ↑ ≈
Increasing A+ inner ↓ ↓ ↑ ↑ ≈ ≈
Opposing uL inner ≈ ≈ ≈ ≈ ≈ ≈

outer ≈ ↓ ↑ ≈ ↑ ≈
Reinforcing uL inner ≈ ≈ ≈ ≈ ≈ ≈

outer ≈ ↑ ↑ ≈ ↑ ≈

of vertical dotted line at T +
C = 350) corresponding with the forcing scheme and reflected in u+2

L in
Figs. 2.5(a) and 2.6(a). Now at z+ ≈ 500 the effects of these wall-normal jet forcings, especially
the opposition jet, on the skewness and the crossterms, are discernible in Figs. 2.5(e) and 2.6(e)].

Further, Figs. 3.5 and 3.6 demonstrate that the u3
L term of Eq. (4) is most strongly influenced by

the jet forcings, while there is a negligible influence on any other nonlinear couplings, especially
in the near-wall region (in a statistically averaged sense). Hence, both the present jet forcing cases
suggest the possibility of a unique scenario where near-wall nonlinear couplings remain unaffected
despite the large-scale fluctuations in the outer region being energized/attenuated. It suggests that
not every large-scale phenomena in the outer region influences the near-wall region, and hence the
prediction of the near-wall signatures based on the outer motions may not be as straightforward for
such complex non-canonical effects (as was for canonical TBLs).

IV. SUMMARY AND CONCLUSIONS

This study evaluates the connection between the amplitude modulation phenomenon, observed
by Mathis et al. [2] for canonical wall-bounded flows, and the interscale interactions observed in
non-canonical TBLs. Published hot-wire datasets corresponding to various non-canonical effects
are considered, including surface roughness, adverse-pressure gradients, and spanwise and wall-
normal forcing, each of which are associated with unique changes in the inner- and large-scale
energy (relative to their canonical baseline cases). These changes, as documented in Table II, are
responsible for distinguishing their interscale interactions from the classical definition of amplitude
modulation conceived by Mathis et al. [2]. As such, interpretation of the correlations conventionally

associated with amplitude modulation (i.e., 3u2
i uL and/or R) should be considered more cautiously

in the future, particularly in the context of non-canonical wall-bounded flows. The present study
also demonstrates a clear distinction between both the range of triadically coupled scales, and wall-
normal regions of the TBL, which are influenced by different non-canonical perturbations (Table II).
These results underscore the necessity of quantifying interactions across a broad scale hierarchy,
via dedicated two-point correlations for example, when constructing predictive models for non-
canonical wall-bounded flows.

Interestingly, it was observed that several (though not all) perturbation effects led to an en-
hancement of interscale coupling and broadband changes in the velocity spectra, with increasing
perturbation intensities (Table II). This observation is consistent with past studies [11,35,38] and
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highlights the tendency of turbulence scales to align more closely (i.e., exhibit reduced phase
lag) when subjected to certain external forcings/perturbations. In terms of flow physics, the ma-
nipulation of interscale coupling in non-canonical flows could be feasibly linked with changes in
scale-dependent inclination angles of coherent structures [39,40]. Previous research in canonical
flows [14,40] has already indicated these angles to be governing interscale phase relationships.
Alternatively, unique perspectives such as the QSQH theory [17,18] may also be able to explain
some of the changes in interscale interactions noted here for non-canonical TBLs. This collectively
encourages a more thorough exploration of wall turbulence from a dynamical systems perspective
[20,38].
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